T gibi bir dönüşümün kaotik olması için dönüşüm tekrar ve tekrar uygulandığında x değerlerindeki küçük farkları büyütmesi gerekir. Bu ise $dT/dx$ türevinin büyüklüğünün her noktada 1'den büyük olmasını gerektirir.
$dT/dx=-1/x^2, 0<x<1$ olduğundan bu açıktır. Ancak bu büyütme duyarlılığı açıkça üretilen x değerine bağlıdır - değer x=0'a ne kadar yakınsa $|dT/dx|$ o kadar büyüktür. Küçük bir $\delta x$ belirsizliği dönüşümün sayesinde $|dT/dx| \delta x$ değerine büyütülür. Kaotik duyarlılık, büyümenin üstel hızda ($exp{\lambda \delta x}$ gibi) olması anlamına gelir.
$\lambda = \ln |dT/dx|$ duyarlılık kuvvetinin ortalama değerini, T dönüşümü ile bulunan x çıktı değerlerini yöneten Gauss olasılık dağılımı yardımıyla bulacağız. Bu ortalama duyarlılık, h, bazen dönüşümün Kolmogorov veya metrik entropisi olarak adlandırılır ve bu nedenle aşağıdaki gibi verilir: $$h=\int^1_0{ln|dT/dx|}p(x)dx.$$
Önceki yazıda verilen T dönüşümü için değeri şu şekildedir: $$h=\int^1_0{\frac{-2ln(x)}{(1+x)ln2}dx}=\frac{\pi ^2}{6(ln2)}.$$
"Ya susmak ya da suskunluktan daha kıymetli bir söz söylemek gerekir." Pisagor
dağılım etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
dağılım etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
24 Haziran 2018
20 Ağustos 2017
Gauss'ın Diğer Olasılık Dağılımı
![]() |
Vikipedi |
Sürekli kesir açılımının genel örneği, 1812'de büyük Alman matematikçi Carl Friedrich Gauss (1777-1855) tarafından keşfedildi, ancak bulgularını yayınlamadı. Bunun yerine, Paris'teki Pierre Laplace'a kendisinin ne bulduğunu, tipik devam eden kesir açılımları için $ P([0; a_1, a_2, \ldots, a_ n, \ldots] <x) $
olasılığının $ \log_2 (1 + x), n \rightarrow \infty$ değerine yaklaştığını yazdı. Sadece 1928'de Gauss'un kanıtı, Rus matematikçisi RO Kuzmin tarafından yeniden yapılandırıldı ve genelleştirildi, (başka bir şekilde) bir yıl sonra Fransız matematikçi Paul Lévy (1886-1971) tarafından kanıtlandı.
Eğer hemen hemen her gerçel sayının sonsuz sürekli kesir açılımını düşünürsek, n genişledikçe, $a_ n$ bölümünün $ k $ tamsayısına eşit olma ihtimali
$P (k) = \frac {\ln {1+ \frac{1}{k (k + 2)} }} {\ln 2}$
değerine yaklaşır.
Bu, bazı önemli özelliklere sahiptir. Öncelikle bu bir olasılık dağılımı olduğundan, k'nın tüm değerleri üzerinden, 1'den $\infty$'a kadar, bir toplam alırsak cevap 1 olur. İkincisi, büyük k değerlerinin nadir olduğunu görüyoruz: Aslında, P (1), P (2) vb değerlerinin hesaplanmasıyla, bölümlerin yaklaşık %41'inin 1 ve %17'sinin 2 olduğu görülür. k arttıkça, bölümlerde görünen daha büyük k değerlerinin olma ihtimali çok düşüktür. Önceki örneklerimize bakarsak, e'nin "hemen hemen her" tanımına dahil edilmeyen özel reel sayı kümesine üye olduğunu görüyoruz. Bununla birlikte, $ \pi $ bir üye gibi görünüyor. Ramanujan'ın ürettiği $ pi $ yaklaşık değerine bakarsak, 16539 kadar büyük bir bölüm olasılığının sadece $10^9 $ 'da yaklaşık 5 parça olduğunu görürüz.
Binom teoremini kullanarak payı genişletmek için k yeterince büyütürsek (yani k(k + 2)'nın k^2 olarak davrandığında), o zaman $P (k) \approx k ^ {- 2}, k \rightarrow \infty $ olur. Bu, hemen hemen her sayının sürekli kesir açılımındaki k değerinin ortalama (veya aritmetik ortalama) değerini bulmaya çalışırsak, sonsuz bir cevap alırız demektir. Ortalama, sadece $ \sum k ^ {- 1}, k \rightarrow \infty $ durumu dışında 1 ila $ \infty $ arasında $\sum kP(k)$ toplamıdır.
Labels:
dağılım,
fibonacci,
gauss,
hemen hemen her,
olasılık,
plus magazine,
sürekli kesir
Kaydol:
Kayıtlar (Atom)